Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175054

RESUMO

Hepatocellular carcinoma is the most common primary malignant hepatic tumor and occurs most often in the setting of chronic liver disease. Liver transplantation is a curative treatment option and is an ideal solution because it solves the chronic underlying liver disorder while removing the malignant lesion. However, due to organ shortages, this treatment can only be applied to carefully selected patients according to clinical guidelines. Artificial intelligence is an emerging technology with multiple applications in medicine with a predilection for domains that work with medical imaging, like radiology. With the help of these technologies, laborious tasks can be automated, and new lesion imaging criteria can be developed based on pixel-level analysis. Our objectives are to review the developing AI applications that could be implemented to better stratify liver transplant candidates. The papers analysed applied AI for liver segmentation, evaluation of steatosis, sarcopenia assessment, lesion detection, segmentation, and characterization. A liver transplant is an optimal treatment for patients with hepatocellular carcinoma in the setting of chronic liver disease. Furthermore, AI could provide solutions for improving the management of liver transplant candidates to improve survival.

2.
Bioengineering (Basel) ; 9(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36135013

RESUMO

Given its essential role in body functions, liver cancer is the third most common cause of death from cancer, despite being the sixth most common type of cancer worldwide. Following advancements in medicine and image processing, medical image segmentation methods are receiving a great deal of attention. As a novelty, the paper proposes an intelligent decision system for segmenting liver and hepatic tumors by integrating four efficient neural networks (ResNet152, ResNeXt101, DenseNet201, and InceptionV3). Images from computed tomography for training, validation, and testing were taken from the public LiTS17 database and preprocessed to better highlight liver tissue and tumors. Global segmentation is done by separately training individual classifiers and the global system of merging individual decisions. For the aforementioned application, classification neural networks have been modified for semantic segmentation. After segmentation based on the neural network system, the images were postprocessed to eliminate artifacts. The segmentation results obtained by the system were better, from the point of view of the Dice coefficient, than those obtained by the individual networks, and comparable with those reported in recent works.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...